
Automatic Synthesis of Comparator Circuit Using Genetic Algorithm
Takayuki NEGISHI†, Naoki ARAI, Nobukazu TAKAI,

Masato KATO, Hiroaki SEKI, Sumit Kumar BISWAS and Haruo KOBAYASHI

Gunma University, 376-8515 Japan

E-mail: †t13801472@gunma-u.ac.jp ; takai@gunma-u.ac.jp

Abstract This paper describes our challenge of automatic analog circuit design that the genetic algorithm chooses the optimal

circuit topology and HSPICE optimizing function obtains their optimal parameter values automatically, by focusing on a com-

parator circuit which is one of the important analog building blocks. Automatic design for analog circuit has not been realized

yet, even though automatic design is being used in digital circuit design; the reason behind this is that the number of parameters to

be considered in an analog circuit design is much larger than digital circuit design. However nowadays it is extremely difficult to

design ICs manually due to their large scale integration and hence their automatic design is demanded. We present our automatic

circuit design flowchart programmed with Java language which realizes 1-click automatic synthesis of the comparator, and shows

that our method can obtain a better performance comparator compared to an initially-set comparator.

Keywords Automatic Synthesis, Analog Circuit, Comparator, Genetic Algorithm, Optimization

1. Introduction

Scaling of integrated circuits is advancing day by day, and it is

becoming difficult to design them manually. In recent years, auto-

matic design is being used in digital circuit design. However, auto-

matic design for analog circuit has not been realized yet. The rea-

son behind this is that the number of parameters to be considered in

the analog circuit design is much larger than that of digital circuit.

Consequently, analog circuit design requires skilled designers and

relatively long design time.

Various methods for automatic analog circuit design have already

been proposed in recent years [1][2][3][4][5]. However most of

them set one circuit topology a priori and choose their optimal pa-

rameter values with the genetic algorithm [6]. Our study here is to

develop an algorithm to choose the optimal circuit topology auto-

matically using the genetic algorithm and optimize their parameter

values using HSPICE optimizing function. This algorithm is chal-

lenging so that we focus on a simple-yet-important analog circuit

block, a comparator [7], as our automatic design circuit example.

We show our circuit design flowchart which we have imple-

mented with Java-language programming; we have realized its 1-

click automatic synthesis. Our automatic synthesis results show that

our algorithm can obtain a better performance comparator circuit

compared to an initially-set comparator circuit.

Start

Create Circuit File

Optimize Circuit Variables

Optimization
is

Completed

Calculate Performance Values

・Current Consumption

・Input-offset Voltage

Assign Bad

Performance Value

Calculate Evaluation Function

End of Synthesis

Selection of The

Highest Performance Circuit

End

Application of

Genetic Algorithm

Yes

No

No

Yes

Step1

Step2

Step3

Step4

Step5

Figure 1: Our automatic comparator circuit synthesis flowchart.

!!!! !!!!ta tb

tc td

80%

50%

20%

Vin

Vout

80%

50%

20%

80%

50%

20%

80%

50%

20%

(VDD − VSS) × 70%

Vo max

Vo min

Vo dif

ta tb

tc td

Vin

Vout

90% 90%

10% 10%

90% 90%

10% 10%

50% 50%

50% 50%

Figure 2: Comparator response time parameters.

Table 1: Comparator performance evaluation items and target val-

ues.

Evaluation Item Target Value

Output voltage difference ≥ 2.0V

Propagation delay time ≤ 168ns

Output voltage transition time ≤ 144ns

Current consumption ≤ 5.65mA

Input-offset voltage ≤ 59.6mV

2. Method of Automatic Synthesis

2.1. Flow of Automatic Synthesis

Fig. 1 shows the flow of our automatic synthesis, and we have

implemented its processing chain with Java-language programming

(approximately 2,500 lines). The explanation of the flow is as fol-

lows:

1. First, our program creates one file that describes the circuit in-

formation. The circuit file uses HSPICE input file format and

prepares for variable parameters to which HSPICE optimizing

function is applied.

2. Next, our program determines proper values of parameter

variables based on specification using the HSPICE optimiz-

ing function.

3. • If the performance optimization can reach the de-

manded design specification (judged from the compara-

tor output voltage difference that is between Vo max and

Vo min in Fig. 2) , our program determines perfor-

mance values by calculating such as current consump-

tion and input-offset voltage.

• Else if the performance optimization cannot reach the

demanded design specification with a certain circuit

topology, the circuit topology is considered as “bad”

and its evaluation value is rated to a very low figure.

Then we skip the analysis part in the flowchart to save

computation time.

4. Increment loop number by 1.

• If the loop number is less than the specified value, then

choose another comparator topology using the genetic

algorithm and go to Step 1.

• Else if the loop number is equal to the specified value,

go to step 5.

5. Select the circuit with the maximum evaluation value as the

highest performance circuit, among all of the evaluated cir-

cuits above.

2.2. Result Evaluation
We consider here to evaluate one circuit performance (labeled as

“k” with one figure, evaluation value Ek). Overall evaluation of

the circuit is represented by an evaluation function (or its calcula-

tion result as a fitness value F in eq. (1)) which is product of all

evaluation values Ek’s for each circuit performance.

F =

N+M
X

k=1

Ek (1)

We set the evaluation value calculation expressions to eq. (2) and

eq. (3), where sk represents k-th performance value (simulation

result) while tk represents its target value (k = 1, 2, .., N + M).

For the items (such as output voltage difference) aiming higher

than the target value, k-th evaluation value is calculated using eq.

(2) by substituting k-th performance value sk and target value tk

Ek =

8

>

<

>

:

sk
tk

(in case sk ≤ tk)

1 + log
“

sk
tk

”

(in case sk > tk).

(2)

We consider that when sk becomes greater than tk, the correspond-

ing performance labeled as k reaches to a satisfactory level and Ek

uses the second expression in eq. (2) to suppress the increment of

the evaluation value Ek for sk. This can solve the trade-off prob-

lem of having only one optimized ‘good’ value, while the others

remain ‘bad’; design trade-off exists in the circuit performance, and

therefore there is every bit of chance of deteriorating one item while

improving the other one but the above method can solve this prob-

lem.

Vin+Vin- Vout

VDD

VSS

L =6.67u
W=14.1u

L =9.88u
W=10.1u

L =10.1u
W=9.89u

L =10.1u
W=9.88u

L =9.86u
W=10.1u

L =14.2u
W=6.69u

L =8.67u
W=11.3u

L =0.4u
W=18.3u

L =0.48u
W=13.6u

Figure 3: Initial comparator circuit.

For the items (such as propagation delay time, output voltage

transition time, current consumption, input-offset voltage) aiming

lower than the target values, k-th evaluation value is calculated us-

ing eq. (3) by substituting k-th performance value sk and target

value tk (k = N + 1, N + 2, .., N + M):

Ek =

8

>

<

>

:

tk
sk

(in case sk ≥ tk)

1 + log
“

tk
sk

”

(in case sk < tk).

(3)

Similarly we consider that when sk becomes less than tk, the cor-

responding performance labeled as k reaches to a satisfactory level

and Ek uses the second expression in eq. (3).

Table 1 shows the evaluation items and target values as well as

the fitness value F . The calculation test bench of each item is re-

ferred to the comparator data sheet in industry [8]. Target values

use performance values of the initial comparator circuit in Fig. 3.

2.3. Application of Genetic Algorithm

Our program searches for comparator circuit topology using ge-

netic algorithm and with the initial circuit in Fig. 3. It decides the

connections among MOSFETs terminals and changes a gene (or

comparator circuit topology) using ‘Selection’ and ‘Mutation’ op-

erations in the genetic algorithm, There are some operation methods

of ‘Selection’ in the genetic algorithm, and here we have used ‘Fit-

ness proportion selection’. We do not use ‘Crossover’ (Crossover

probability is 0%) in the genetic algorithm this time, because it may

create floating nodes inside the circuit. Next we will explain opera-

tions of ‘Selection’ (Fitness proportion selection) and ‘Mutation’.

2.3.1. Fitness Proportion Selection

This section explains ‘fitness proportion selection’. Let the fit-

ness value of circuit topology k (k = 1, .., Np) in certain generation

be Fk, and then eq. (4) shows the expectation that the individual k

is chosen.

Fk

ΣkFk/Np
=

Fk

F̄ .
(4)

Here Np represents the population and F̄ represents the mean of

the fitness value. Our program generates next-generation popula-

tion (circuit topologies) based on eq. (4); for example, the circuit

topology k is selected as the next-generation population with the

probability proportional to Fk/F̄ ; this is called as ‘fitness propor-

tion selection’ in the genetic algorithm theory [6].

2.3.2. Mutation

Our program operates ‘Mutation’ to make a different circuit

topology, where we take care of not producing floating nodes in-

side the circuit. Purpose of mutation process is explained below:

Let us consider the circuits in Fig. 4. There is node-A (in the

upper circuit) where two elements from the high potential side and

also two elements from the low potential side are connected, which

is defined as an H-type node. Our program may mutate the H-type

node to split into two nodes as shown in the lower circuits in Fig. 4.

Next consider the circuits in Fig. 5, where the upper circuit has

two H-type nodes; node-B and node-C. Our program may mutate

to create new nodes (node-D, node-E) and reduce the number of

vertically connected MOSFETs.

Then look at the circuits in Fig. 6, where in the upper circuit,

node-F splits a current path into two paths, and node-G gathers

two current paths as one path. Our program may mutate to con-

nect node-F to another node as shown in the lower circuits.

In addition, our program may mutate to change not only the node

but also the type of MOSFET; our program may change PMOS to

NMOS and vice versa; probabilities of both are 50% and 50%.

A

A A’ A A’

Split into two nodes (A, A’).

Figure 4: Example of mutation (case 1). The above circuit stays

as itself or it may become the lower left or right circuit in the next

generation.

B

C

D EB B

C C

Create a new node (D, E).

Figure 5: Example of mutation (case 2).

(F)F

F
G

G
G

(F)
F

Node-F connect to another node (G).

Figure 6: Example of mutation (case 3).

−

+

+
−

Comp
Vout

Vin 15pF50Ω 2.0V-1.0V

Figure 7: Test bench for propagation delay time, output voltage

transition time and current consumption calculations.

−

+

1MΩ

1kΩ

1kΩ

1MΩ 100µF

Vout

1.5V-1.5V

Comp

Figure 8: Test bench for input-offset voltage calculation.

2.4. Initial Circuit to Apply Genetic Algorithm
Genetic algorithm result depends largely on the initial value; here

the initial circuit is a basic comparator circuit in Fig. 3. In our all

simulations, we use 0.18 µm CMOS process parameters.

2.5. Performance Value Calculation Circuit
This section shows test bench of evaluation items. Test bench

of Fig. 7 calculates output voltage difference, propagation delay

time, output voltage transition time and current consumption (dur-

ing these testings, Vin− is connected to GND (Note that VDD is

plus supply and VSS is minus supply.)), whereas test bench of Fig.

8 calculates input-offset voltage. Furthermore, 4 different response

time parameters are defined as shown in Fig. 2; propagation delay

time is defined as (ta + tb)/2 and output voltage transition time

is defined as (tc + td)/2. Current consumption defines effective

current value in one cycle of input pulse and Input-offset voltage is

defined by output terminal voltage.

3. Result of Automatic Synthesis
Our program executes the automatic synthesis under the condi-

tions in Table 2. It generates thirty circuits in one generation. All

the circuits of the first generation use the initial circuit topology. In

the second and later generations, there can be many circuit topolo-

gies in one generation, and some of them are succeeded in the next

generation using ‘Selection’ algorithm and some circuit topologies

may change using ‘Mutation’; it continues up to 200 generations.

Fig. 9 shows the transition of the maximum fitness of each gen-

eration; fitness upgrades until about 25 generations, but there are no

significant changes later on. Fig. 10 shows best performance circuit

among all automatically synthesized circuits. Fig. 11 shows the in-

put and output waveform of the best performance circuit. Fig. 12

and Fig. 13 shows the enlarged views of the input and output wave-

forms. These figures show that the synthesized comparators work.

Table 3 shows performance values of the circuit in Fig. 10, and we

see that performance of the synthesized circuit is better than that of

the initial one.

Table 2: Genetic algorithm conditions for automatic synthesis.

Item Value

Population (Np) 30

Generation 200

Crossover rate 0%

Mutation rate 30%

Figure 9: Transition of the maximum fitness value F (which is prod-

uct of all the evaluation values E’s).

Vin+Vin- Vout

VDD

VSS

L =7.83u
W=20.5u

L =9.90u
W=10.7u

L =10.3u
W=10.3u

W=5.95u

L =10.1u
W=10.7u

L =10.3u
W=10.3u

W=7.75u

W=15.6u

L =3.97u
W=19.0u

L =0.4u

L =6.77uL =13.4u

Figure 10: The best performance comparator circuit among all au-

tomatically synthesized circuits.

Figure 11: Input and output waveforms of the best performance

comparator circuit in Fig. 10.

Figure 12: Input and output waveforms (enlarged view of their ris-

ing parts in Fig. 11) .

Figure 13: Input and output waveforms (enlarged view of their

falling parts in Fig. 11).

Table 3: Target values and simulation results.

Evaluation Item Value Type Initial Circuit Final Circuit

Output voltage Performance 2.29V 2.72V

difference Evaluation 1.06 1.13

Propagation delay Performance 168ns 73.7ns

time Evaluation 1.0 1.36

Output voltage Performance 144ns 272ns

transition time Evaluation 1.0 0.72

Consumption Performance 5.65mA 1.48mA

current Evaluation 1.0 1.58

Input-offset Performance 59.6mV 3.0mV

voltage Evaluation 1.0 2.3

Fitness value 1.06 4.06

(product of all evaluation values)

4. Conclusion
In this study, we have developed automatic synthesis program to

design a comparator circuit using genetic algorithm. Our automatic

synthesis shows that the performance of the synthesized circuit is

better than that of the initial circuit and its program runtime for au-

tomatic synthesis was about 20 hours on a standard PC. We have

confirmed that the evaluation value increases as the generation re-

peats compared to the initial circuit. We have used the HSPICE op-

timizing function to determine circuit variable parameters as well

as genetic algorithm to determine the circuit topology.

Future study challenge is to realize successful automatic com-

parator circuit synthesis from its faulty initial circuit, as well as its

silicon proof.

References

[1] K. Jin’no. An Automated Circuit Design Procedure by Means
of Genetic Programming. International Symposium on Nonlin-
ear Theory and its Applications, pages 194–197, Oct 2005.

[2] J. Yu and Z. Mao. A Design Method in CMOS Operational
Amplifier Optimization Based on Adaptive Genetic Algorithm.
WSEAS Transactions on Circuits and Systems, vol.8:548–558,
July 2009.

[3] N. Unno, S. Takagi, and N. Fujii. Design Automation of Ana-
log Circuits by Combination of Circuit Blocks: Synthesis of
OpAmp. The Institute of Electrical Engineers of Japan, ECT-
04-18:35–40, Jan 2004.

[4] N. Kitamura and N. Takai. Optimizing method for analog cir-
cuit design using immune algorithm. The Institute of Electrical
Engineers of Japan, ECT-05-45:37–42, June 2005.

[5] N. Arai, N. Takai, B. S. Kumar, and H. Kobayashi. Automatic
Design of Analog Filter Using Genetic Algorithm. 4th Inter-
national Conference on Advanced Micro-Device Engineering,
Kiryu, Japan, Dec 2012.

[6] D. E. Goldberg and K. Sastry. Genetic Algorithms: The Design
of Innovation, 2nd edition. Springer, 2010.

[7] R. J. Baker. Mixed-Signal Circuit Design, Second-Edition. Wi-
ley, 2002.

[8] Renesas Electronics. HA1631S01/02/03/04.
http://documentation.renesas.com/doc/products/linear
/rjj03d0044 ha1631s01.pdf, 2006.

